
Suitability of Molecular Descriptors for Database Mining. A Comparative
Analysis

Gabriele Cruciani,*,† Manuel Pastor,‡ and Raimund Mannhold§

Dipartimento di Chimica, Laboratorio di Chemiometria, Universita di Perugia, Via Elce di Sotto, 10, 1-06123 Perugia, Italy,
Department de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 80,
E-08003 Barcelona, Spain, and Institut für Lasermedizin, Arbeitsgruppe Molekulare Wirkstoff-Forschung,
Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse l, D-40225 Düsseldorf, Germany
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Database mining methods rely on the molecular descriptors used to characterize a structural
database. In the present investigation, five different types of descriptors (log P, UNITY
fingerprints, ISIS keys, VolSurf, and GRIND) are applied to characterize various databases (n
) 1007, 100, and 229) comprising drugs almost exclusively. The validity of the descriptors is
comparatively analyzed via principal component analysis and its hierarchical variant, consensus
principal component analysis. Both pharmacodynamic and pharmacokinetic aspects of database
mining are treated. For pharmacodynamic aspects, clustering behavior achieved with the
different descriptors is tested on the chemically homogeneous â-blockers, benzodiazepines, and
penicillins and on the chemically more diverse class I antiarrhythmics. The following ranking
is observed: UNITY fingerprints > ISIS keys and GRIND > VolSurf > log P. Regarding
information content, the CPCA superweight plot indicates similarity between fingerprints and
ISIS keys as well as between VolSurf and log P, while GRIND differs from all the remaining
descriptors. Solubility data and blood/brain barrier penetrating behavior serve as test cases
for pharmacokinetic aspects. Comparison of the descriptors applied to these data reveals that
VolSurf has the most realistic and consistent behavior, GRIND shows intermediate behavior,
while UNITY fingerprints and ISIS keys are not well suited for pharmacokinetic profiling.
From this comparative analysis, we conclude that VolSurf descriptors exhibit particular
advantages in treating pharmacokinetic aspects; UNITY fingerprints, ISIS keys, and GRIND
descriptors are of special value for tackling pharmacodynamic aspects of database mining. The
parameter log P is of limited applicability in database mining because of rather poor reliability
and lack of completeness of data.

Introduction

Techniques from combinatorial chemistry gain in-
creasing impact on lead generation and optimization in
drug discovery. This involves the synthesis of sets of
molecules containing large numbers of structurally
related compounds that are rapidly generated by auto-
mated procedures. The joint development of high-
throughput bioassays has meant that combinatorial
chemistry provides a far more cost-effective approach
to the discovery of bioactive compounds than traditional
approaches that require the sequential synthesis and
testing of individual molecules. In pharmaceutical
research, the introduction of combinatorial chemistry
implies the availability of large collections of compounds
and consequently the availability of large databases
collecting their structures, their measured biological
activities, and other biological and physicochemical
properties.

These databases are often regarded as a highly
valuable source of information, and specific informatic
manipulation is applied on them in order to evaluate
the molecular diversity of their components, searching

for compounds with particular pharmacodynamic or
pharmacokinetic properties (pharmacophoric searches
or pharmacokinetic profiling, respectively) and even
trying to differentiate druglike from nondruglike com-
pounds. In general, the informatic manipulation of the
databases has been called “database mining”.

Irrespective of the purpose of database mining, its
success is subordinated to the choice of an appropriate
molecular characterization, producing a set of informa-
tive variables. Suitable characterizations must be, first
of all, relevant to the properties to be studied, but some
other characteristics should be also considered, such as
the time needed for their computation and analysis and
the storage requirements, to mention a few. Types of
descriptors frequently used in database mining are
reviewed by Brown1,2 (see also Table 1).

Classically, structural descriptors were derived from
global molecular properties. Physicochemical properties
such as lipophilicity, electrostatics, steric shape, and
bulk deserve mentioning. An advantage of these de-
scriptors is their fast computation. A serious disadvan-
tage, however, is their lack of completeness and accu-
racy, at least in some cases.3 This holds in particular
for some commercial software available for calculating
log P. The problem of completeness, but not of accuracy,
is solved with some of the newer whole-molecule ap-
proaches validated via neural networks.3
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Two-dimensional fragment-based descriptors, derived
from substructure search systems, are frequently used
in database mining. There are two main types. Struc-
tural keys make use of a predefined fragment dictionary
and record the presence or absence of a number of small
generic or specific fragments. Alternatives are hashed
fingerprints.

Several 3D substructure search systems use a screen-
ing stage prior to geometric search. The screening
methods used in these systems encode geometrical
relationships between features such as atoms, ring
centroids, and planes in terms of distances and angles.

The aim of the present work is to study the informa-
tion given by different types of descriptors (Table 1) and
to analyze their suitability for different practical pur-
poses. With this aim, databases of 1007, 100, and 229
structures, mainly commercial drugs, have been char-
acterized using different descriptors and then analyzed
via simple chemometric tools such as PCA and CPCA.
The analysis has been oriented to produce graphical
representations of the databases where one can recog-
nize the ability of the descriptors to discriminate
between different families of compounds according to
their different pharmacokinetic and pharmacodynamic
properties. Special attention has been paid to calculated
lipophilicity descriptors computed with four different
commercial software packages.

Computational Methods
Databases. The database for pharmacodynamic studies (n

) 1007) comprises almost exclusively pharmaceuticals such
as penicillins, â-blockers, benzodiazepines, and many more.
It covers a broad spectrum of diverse chemistry ranging from
simple structures such as acetyl salicylate to complex mol-
ecules such as erythromycin. Even if most compounds can be
considered “druglike”, the database contains some molecules
as lipophilic as â-caroten and others as hydrophilic as acarbose.
Databases for pharmacokinetic studies comprise 100 molecules
for the solubility example and 229 molecules for the blood/
brain barrier permeation example.

Lipophilicity Descriptors. Methods for calculating lipo-
philicity (log P) can be divided into two classes: substructural
approaches and whole-molecule approaches. The substructure
approaches have in common that molecules are cut into atoms
or groups; summing the single-atom or fragmental contribu-
tions (supplemented by applying correction rules in the latter
case) results in the final log P. On the other hand, the whole-
molecule approaches inspect the entire compound; they use,
for instance, molecular lipophilicity potentials, topological
indices, or molecular descriptors to quantify log P, and some
reflect the impact of the three-dimensional structure on
molecular lipophilicity.

In this study, we have obtained log P estimations with soft-
ware based on both types of approaches: three substructure
approaches (CLOGP version 4.34,4,5 KOWWIN,6 MOLCAD7,8)
and one whole-molecule approach (HINT9). The fragmental
system CLOGP4,5 from Hansch and Leo is based on (in contrast
to other fragmental methods) the principles of “construction-
ism”. The basic fragmental values were derived from ac-
curately measured log P data of simple molecules such as
hydrogen and methane, and then the remaining fragment set
was constructed. A total of 200 fragment values and 25
correction factors are given. The KOWWIN software uses the
atom/fragment contribution method by Meylan and Howard.6
This is a reductionist approach derived by regression analysis.
A total of 144 atom/fragment values and 235 correction factors
are listed in version 1.54. A significant advantage of this
approach is the fact that because of the simple atom/fragment
methodology, so-called missing fragments only rarely occur.
The MOLCAD8 software uses the Ghose-Crippen method,7 a
purely atom-based procedure that exclusively applies atom
contributions and avoids correction factors. Atoms (C, H, O,
N, S, and halogens) are classified into 120 atom types. The
program HINT9 is a whole-molecule approach reflecting three-
dimensionality by combining substructure contributions and
conformational effects. The key parameter is the hydrophobic
atom constant ai, derived from Leo’s fragment constants. HINT
calculates hydrophobic atom constants using the following
criteria: (1) the sum of atom constants within a fragment
equals the fragment constant value; (2) bond, branching, or
vicinal halogen factors are applied to all eligible atoms, while
polar proximity factors are applied to the central atom of
fragments; (3) superficial atoms are considered to be more
important than central atoms.

Descriptors Derived from 2D Structure. Very often
some form of fragment-based descriptors is used to character-
ize compounds in a database. Fingerprints are bit strings
representing the answers to yes and no questions about the
presence or absence of various substructural features within
the molecular structure of a given compound. Fingerprints
represent very high-dimensional chemistry spaces, typically
from some hundreds up to thousands of bits. Representatives
of fragment-based descriptors in this study are UNITY fin-
gerprints and ISIS keys. UNITY fingerprints (e.g., similar to
Daylight fingerprints used in many other papers) are based
on a structural characterization using paths of connected terms
and differ from ISIS keys by using a fixed number of defined
substructures. UNITY fingerprints10 were calculated with the
standard definition rule file as implemented in UNITY 2.4.
With ISIS keys,11 molecular holograms were calculated via an
SPL script (Sybyl, version 6.4).

Descriptors Derived from 3D Structure. Two recently
developed descriptors included in our comparative study are
the VolSurf descriptors12 and the GRID independent descrip-
tors (GRIND).13 Both types of descriptors have in common the
fact that they start from molecular interaction fields (MIF)
computed with the program GRID. The large body of informa-
tion contained in these fields (on the order of some hundred
thousands of grid points) is then encoded using two different
methods. VolSurf analyzes the MIF obtained with diverse
probes (often water and the hydrophobic probe) and computes
the volume and surface of the regions enclosing values of
energies of interaction under certain cutoff limits, together
with some other variables expressing their geometric distribu-
tions in the space. The result of such an analysis is a small
number of variables describing the overall distribution of
hydrophobic and hydrophilic regions around the molecule with
a distinct physicochemical meaning. VolSurf descriptors are
useful for describing pharmacokinetic and physicochemical
properties.12 On the other hand, GRIND descriptors have been
designed mainly to represent pharmacodynamic properties.
The computation of GRIND involves a preliminary simplifica-
tion of a few MIF to extract the main pharmacophoric regions,
followed by a particular type of autocorrelation transform. The
results are a small set of alignment-independent descriptors
representing the internal geometrical relationship of such

Table 1. Descriptors Used for Database Mininga

types of descriptors
type used in
this study

I descriptors derived from global
molecular properties

log P

II descriptors derived from 2D structure
fragment substructures UNITY fingerprints,

ISIS keys
receptor recognition descriptors
topological indices

III descriptors derived from 3D structure VolSurf, GRIND
IV descriptors based on

biological properties
V combination descriptors

a Descriptors used for database mining according to the clas-
sification of Brown.1,2 In the right-hand column, those descriptors
are listed that are comparatively analyzed in this study.
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pharmacophoric regions. These can be used directly for the
chemometric analysis and can be interpreted with the ap-
propriate software,13 using graphical representations of the
pharmacophoric regions and their interactions, together with
the molecular structures, in interactive 3D plots.

Chemometric Analysis of the Descriptors. Since the
aim of the study is to analyze the information given by the
different types of descriptors, we have approached the problem
using techniques generating simple 2D maps of the com-
pounds. Of these, one can study the different ability of the
descriptors to distinguish between different types of com-
pounds, in terms of the distance between the different types
of compound in the maps. The main technique used is the
classic principal component analysis. To gain additional insight
into the problem, a hierarchical variant of the PCA was also
applied: the consensus principal component analysis.14 In any
case, the analysis starts by building an X matrix of data from
the database. In this matrix, the rows represent the com-
pounds and the columns contain the variables describing the
compounds. The PCA is a well-known technique. To extract
relevant information from a matrix, the PCA decomposes the
matrix into a product of two smaller matrices: T (score matrix)
and P′ (loading matrix), which explain at best the overall
variance of the original X matrix. The score matrix contains a
few variables (Principal Components or PC) that are used to
describe the objects (compounds) while the loading matrix
again relates the original variables with the PC. From a
practical point of view, the PCA analysis of the matrix allows
us to obtain highly informative graphical representations of
complex, high-dimensional matrices, in terms of a score plot
and a loading plot. The score plot is a simplified representation
of the objects where each compound is located in a particular
position of the plot. The loading plot, on the contrary, is a
representation of the participation of the original variables into
the PC.

When the descriptors are not single variables but blocks of
variables and when there is an interest in evaluating the
discriminating power of the variables themselves, hierarchical
variants of PCA are superior to regular PCA. Among the
available methods, we decided to apply consensus principal
component analysis (CPCA), as implemented in GOLPE.15

Details of the algorithm are described elsewhere.16 Basically,
CPCA uses exactly the same objective function of PCA and
tries to best explain the overall variance of the X matrix, but
the analysis is made at two levels: the block level, which
expresses the “opinion” of each of the blocks of variables, and
the superlevel, which express the “consensus” of all blocks. As
implemented in GOLPE, CPCA provides a solution in the
superlevel that is identical to the solution found in regular
PCA. The same T and P′ matrices are obtained. Additionally,
the method produces block scores Tb and block loadings Pb for
each of the probes used and a weight matrix that expresses
the participation of each block in the overall scores. The block
loadings are essentially identical to the “piece” of the loading
corresponding to a certain block except for the use of a different
normalization. On the contrary, block scores represent a
peculiar point of view of the model given by a certain probe
and provide unique information not present in regular PCA.
Object distances in the block scores are used in GOLPE to
assess the relative importance of the different blocks of
variables in their discrimination.

Chemometric analysis was performed on SGI 02 work-
stations, using the GOLPE software, version 4.5.15

Results and Discussion

Database mining strictly depends on the selection of
appropriate molecular descriptors, guided by the specific
aim of a study. Both pharmacodynamic and pharmaco-
kinetic aspects of database mining are treated here. The
following descriptors are comparatively analyzed to
cover most different types: log P data represent de-
scriptors derived from global molecular properties.
UNITY fingerprints and ISIS keys are examples of

descriptors derived from 2D structure. Finally, VolSurf
descriptors and GRIND, calculated with the new soft-
ware ALMOND, represent descriptors derived from 3D
structure. Descriptors are compared by using the con-
sensus principal component analysis (CPCA) option of
the software GOLPE. Criteria for comparison are as-
pects of information content, reliability, completeness,
and rapidity in deriving the individual descriptors.

Pharmacodynamic Aspects of Database Mining.
One main goal of database mining is the search for
pharmacodynamic similarity. The database (n ) 1007),
used for this part of our study, comprises drugs almost
exclusively. The chemically homogeneous classes of
â-blockers (29 structures), benzodiazepines (15 struc-
tures), and penicillins (26 structures) as well as the
chemically more diverse class I antiarrhythmics (9
structures) are used as test cases to exemplify their
clustering behavior. Application of CPCA to the entire
database using 1771 variables, derived with five de-
scriptors (for details, see Computational Methods),
yields a two-component model explaining about 20% of
the variance. The four chemical classes are relatively
well separated and nicely clustered (see Figure 1).
Figure 2 elucidates which descriptor block is responsible
for this separation. Separation obtained with the UNITY
fingerprints is documented in Figure 2a, clearly indicat-
ing a nice clustering of all four pharmacological classes.
Thus, UNITY fingerprints exhibit the highest contribu-
tion to the global separation as shown in Figure 1. GRID
independent descriptors GRIND, calculated with the
ALMOND software, also cluster penicillins, 1-blockers,
and benzodiazepines, but class I antiarrhythmics are
mixed between the other clusters (Figure 2b). ISIS keys
show a less evident separation (Figure 2c). Penicillins
are well clustered and separated from the other groups,
but â-blockers and benzodiazepines are less well sepa-
rated and exhibit some overlap with the class I anti-
arrhythmics. Only the penicillins are separated when
using the VolSurf descriptors, while the remaining
groups overlap (Figure 2d). The log P descriptors com-
pletely fail to cluster the four groups, which all are
mixed, as can be derived from Figure 2e. From this
comparison one can conclude the following ranking of
descriptor suitability for pharmacodynamic aspects of
database mining:

Results of another interesting aspect of descriptor
comparison, i.e., information content, are summarized
in Figure 3 via the loading plots, which represent the
original variables in the space of the principal compo-
nents. The loading of a variable indicates how much this
variable participates in defining the principal compo-
nent. Similarity in projection indicates similarity in
information content. A comparative view in Figure 3
elucidates, for example, a certain similarity between
log P and VolSurf descriptors and between UNITY
fingerprints and ISIS keys; GRIND descriptors differ
from the other descriptors in a peculiar way. The CPCA
superweight plot, shown in Figure 4, summarizes the
above observations: the log P block is closest to the
VolSurf block, UNITY fingerprints are closest to ISIS
keys, while the isolation of GRIND descriptors under-

UNITY fingerprints > GRIND J ISIS keys >
VolSurf descriptors > log P(s)
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lines the peculiar information inherent in this descriptor
type. GRIND descriptors show a compromise between
wholistic descriptors (such as VolSurf) and fingerprint
descriptors (such as UNITY). It should be pointed out
that GRIND descriptors are the only descriptors re-
ported here that depend on the molecular conformation.
Although the latter can be a problem in the modeling
phase, the results clearly demonstrate that GRIND
descriptors are still able to clusterize compounds on the
basis of pharmacodynamic properties. Figure 5 shows
the molecular interaction field maps obtained with an
acceptor and a donor probe for amoxicillin and cyclacillin
molecules. The two penicillins differ mainly in the
phenol moiety replaced by a cyclohexane moiety in
cyclacillin. UNITY and ISIS keys cluster amoxicillin and
cyclacillin really close in the PCA space. Conversely,
when GRIND descriptors are used, the two penicillins
are more separated. The molecular interaction fields
(from which the GRIND descriptors are calculated) are
really similar for the two molecules. However, the
regions produced by the phenolic hydroxyl are not
present in cyclacillin and produce a larger potential
interaction with a virtual receptor site. Thus, GRIND
descriptors tend to favor 3D potential interaction while
fingerprint descriptors tend to favor similar patterns in
the one- or two-dimensional structure.

log P Fragmentation. The rather disappointing
results with log P as a descriptor initiated us to inves-
tigate this parameter in more detail. The idea to perform
database mining by PCA of a set of log P descriptors
stems from a previous paper.17 The log P parameter can
be seen as a “latent variable” comprising a variety of
molecular properties, and indeed, different calculation

methods are able to highlight different molecular prop-
erties. Important features of chemical libraries could
thus be discovered by combining a few different calcula-
tion methods (in our case KOWWIN, CLOGP, HINT,
and MOLCAD) as descriptors for the X space. The log P
data, calculated with these four programs, are extremely
different in a lot of cases. To investigate the discrepan-
cies between the four calculation methods in a system-
atic way, we used the following approach. For the entire
database of 1107 structures, we calculated a ∆ log P
value by subtracting the average of the remaining three
log P values from the one individual log P, as described
in the following equations:

In a second step, the compounds of the database were
fragmented and represented by a sort of fingerprint
indicating the presence of a fragment with “1” and its

Figure 1. Application of consensus principal component analysis to the entire database using 1771 variables, derived with five
descriptor blocks, yielding a global two-component model explaining 20% of the variance. The four chemical classes are nicely
clustered. Coding is the following: â-blockers (B), penicillins (P), benzodiazepines (Z), and class I antiarrhythmics (A).

∆ log P (KOWWIN) ) log P (KOWWIN) -
average of (log P (CLOGP) + log P (HINT) +

log P (MOLCAD)) (1)

∆ log P (CLOGP) ) log P (CLOGP) -
average of (log P (KOWWIN) + log P (HINT) +

log P (MOLCAD)) (2)

∆ log P (HINT) ) log P (HINT) -
average of (log P (KOWWIN) + log P (CLOGP) +

log P (MOLCAD)) (3)

∆log P (MOLCAD) ) log P (MOLCAD) -
average of (log P (KOWWIN) + log P (CLOGP) +

log P (HINT)) (4)
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Figure 2. Individual CPCA models with the five descriptors used in this study. Filled points represent members of the chemical
classes of â-blockers (B), penicillins (P), benzodiazepines (Z), and class I antiarrhythmics (A). (a) CPCA model with UNITY
fingerprints. All four pharmacological classes are well separated. For the sake of graphical clarity, only three classes (A, P, Z) are
shown. Thus, UNITY fingerprints mostly contribute to the global separation as shown in Figure 1. (b) CPCA model with GRIND.
GRIND descriptors also cluster penicillins, â-blockers, and benzodiazepines, while class I antiarrhythmics are mixed. (c) CPCA
model with ISIS keys showing a less evident separation. Penicillins are well clustered, and â-blockers are less well separated and
exhibit some overlap with the other classes of compounds. (d) CPCA model with VolSurf descriptors. Only the penicillins are
separated, while all the remaining groups are overlapping. (e) CPCA model with log P as descriptor. The log P parameter completely
fails to cluster the four test groups, which are all mixed.

Descriptors for Database Mining Journal of Medicinal Chemistry, 2002, Vol. 45, No. 13 2689



absence with “0”. In the present work, the fragments
considered were extracted from the analysis of the
structures included in the database. Via this procedure,
a matrix with 900 variables and 1107 objects (database
molecules) was obtained. When ∆ log P is included as a
dependent variable, the PLS analysis yields a model

explaining 20% of the variance. It means that 20% of
the big intermethod variation in log P is due to the
presence of some fragments that are peculiar. The
remaining 80% is due to a misparametrization that has
no “structure”. Such an approach allows for identifying
single fragments responsible for intermethod log P

Figure 3. Comparison of the information content of the five descriptors via loading plots. Filled points represent the loadings for
the individual descriptor under consideration. (a) Loadings plot for log P as descriptors. (b) Loadings plot for ISIS keys. (c) Loadings
plot for UNITY fingerprints. (d) Loadings plot for VolSurf descriptors. (e) Loadings plot for GRIND. Comparison of parts a-e
elucidates a similarity (corresponding to the pattern between the filled points) between log P and VolSurf and between UNITY
fingerprints and ISIS keys; GRIND descriptors differ from the other descriptors in a peculiar way.
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differences. For instance, the parametrization of the
diphenylmethyl moiety is responsible for the large
differences between HINT and the other three methods
in calculating cinnarizine or flunarizine. The presence
of a CO-NH-CH2-CH(OH)-CH2OH fragment as, for
example, in iohexol or iopromide causes large differences
(∆ log P ≈ 4) between MOLCAD and the remaining
software. An even more dramatic example is bleomycin,
for which KOWWIN and CLOGP differ by 6-8 log units
from HINT and MOLCAD. Our fragmentation approach
allows us to attribute this discrepancy to the presence
of a thiazole moiety. Taken together, the big inter-
method variations in log P cast doubt on the applicabil-
ity of this descriptor in database mining.

Pharmacokinetic Aspects of Database Mining.
Solubility data and blood/brain barrier penetrating
behavior serve as examples to investigate pharmaco-
kinetic aspects of database mining.

Aqueous solubility is one of the key factors for the
bioavailability of pharmaceutical agents, and approaches
to calculate this property are highly demanded. In the
dataset used for investigating pharmacodynamic aspects
of database mining, solubility data are known to us for
only 40 compounds. Thus, we used our own dataset of
100 structures (mixed drugs and nondrugs) with known

solubilities for a comparative PLS analysis applying
ISIS keys, VolSurf parameters, and GRIND as molec-
ular descriptors. When using the ISIS keys, the PLS
analysis yields the following model: with five compo-
nents the squared correlation coefficient r2 amounts to
0.84; model validation with the LOO approach gives a
cross-validated correlation coefficient q2 of 0.60. Even
if the model is rather good, the standard deviation of
the error of prediction (SDEP) is too high (1.40). VolSurf
descriptors produce a significantly better model; the
corresponding squared correlation coefficient for the
five-component model is 0.91, while model validation
results in a cross-validated correlation coefficient of 0.83,
again applying the LOO approach. It should be noted
that the standard deviation of the error of prediction is
0.90 log units in this case, which is half a log unit
smaller than in the previous model. To underline the
superiority of VolSurf descriptors over ISIS keys in
solubility models, score plots from principal component
analysis are comparatively shown in Figure 6. In the
case of ISIS keys, no discrimination between soluble
(black circles) and insoluble compounds (open circles)
can be found; soluble and insoluble compounds are
evenly distributed in the plot of Figure 6a. In contrast,
a significant clustering regarding compound solubility
is observed, when using VolSurf descriptors (Figure 6b).
Soluble and insoluble compounds are nicely separated,
and even the compounds with intermediate solubility
(gray circles) are clustered between the highly soluble
and the insoluble structures. GRIND descriptors pro-
duce a model with a squared correlation coefficient for
the five-component model of 0.77, while model valida-
tion results in a cross-validated correlation coefficient
of 0.65. In this latter case, the standard deviation of the
error of prediction is 1.20 log units. GRIND descriptors
are closer to ISIS keys than to VolSurf in the solubility
dataset.

The second pharmacokinetic example is dedicated to
blood/brain barrier penetrating behavior. Central ner-
vous system (CNS) active compounds need to be able
to permeate the blood/brain barrier, whereas for pe-
ripherally acting drugs blood/brain barrier penetration
should be kept as low as possible to avoid CNS-related
side effects. In any case, permeability of the blood/brain
barrier is always a key parameter in pharmacokinetic
drug profiling. Experimental approaches for this pa-
rameter are complicated and not well suited in the
investigation of large databases. A fast and reliable
computational method for predicting blood/brain barrier

Figure 4. CPCA superweight plot summarizing the informa-
tion content of the five descriptor blocks. The VolSurf block is
located between log P and ISIS blocks, UNITY fingerprints and
ISIS keys exhibit some similarity, while the peculiar informa-
tion inherent in the GRIND descriptor type is reflected by its
outlier behavior. For evaluating similarity, one has to consider
the projection of the block descriptors on both weight axes.

Figure 5. Molecular interaction field maps for amoxicillin (right part) and cyclacillin (left part) obtained with a donor NH (blue
regions) and an acceptor carbonyl CO (yellow regions) probe. The 3D pattern of the molecular interactions is really similar, but
amoxicillin shows longer interaction distances because of the hydroxy phenol group.
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permeability would be a significant progress for drug
development.

A step in this direction was published by Cruciani et
al.18 These authors used VolSurf descriptors to produce
a simple model suitable for the external prediction of
blood/brain barrier permeability. The database used
includes 229 drugs with a well-defined brain penetration
profile. For these compounds an X matrix comprising
72 VolSurf descriptors was calculated and discriminant
PLS was used for chemometric analysis, thus assigning
a score of 1 to the blood/brain barrier permeating drugs
and a score of -1 to the nonpermeating drugs. From
PLS modeling and cross-validation, two significant
latent variables were obtained and the model assigned
the correct permeation profile to more than 90% of the
compounds in the database. Figure 7a demonstrates

clearly the significant separation between blood/brain
barrier permeating and nonpermeating drug via the
scores plot of principal component analysis. Taken
together, the results summarized here demonstrate that
it is possible to predict the blood/brain barrier perme-
ation of putative drugs from their three-dimensional
structures using VolSurf descriptors. A further advan-
tage of this approach is that it allows for quantifying
the favorable and unfavorable contributions of physico-
chemical and structural properties to blood/brain barrier
permeation. Therefore, the method allows for manipu-
lating the structures in a rational way in order to
improve the brain permeation properties of drug can-
didates under development.

For the sake of comparison, results of a corresponding
score plot from principal component analysis with the

Figure 6. Comparison of score plots from principal component analysis for VolSurf descriptors and ISIS keys in solubility models.
Black circles indicate soluble compounds, open circles indicate insoluble compounds, and gray circles correspond to a solubility
between the two extremes. Whereas in the case of ISIS keys soluble and insoluble compounds are mixed (a), a clear separation
between the two groups is observed when using VolSurf descriptors (b).
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same dataset, but using UNITY instead of VolSurf
descriptors, are given in Figure 7b. The mixed pattern
of blood/brain barrier permeating and nonpermeating
drugs underlines the superiority of VolSurf descriptors
for pharmacokinetic aspects of database mining. When
GRIND descriptors are used, the PCA model, reported
in Figure 7c, clearly demonstrates the nice performance
of these kinds of descriptors.

Concluding Remarks

From this comparative analysis, we conclude that
UNITY fingerprints, ISIS keys, and GRIND descriptors
are of special value for tackling pharmacodynamic
aspects of database mining. For the test classes of
â-blockers, benzodiazepines, penicillins, and class I

antiarrhythmics, the following ranking of descriptor
suitability was observed: UNITY fingerprints > GRIND
g ISIS keys > VolSurf descriptors > log P. VolSurf
descriptors exhibit particular advantages in treating
pharmacokinetic aspects. For such important aspects
of pharmacokinetic profiling as solubility and blood/
brain barrier permeating behavior, we could show a
significant superiority of VolSurf descriptors over ISIS
keys. The log P parameter is of limited applicability in
database mining because of rather poor reliability and
lack of completeness of data.
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